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Derivation Process
● To maximize the cohesion of our architecture, we looked through each 

directory in Understand one by one. 
● This optimization for cohesion came with a price in the form of coupling. 

Each element is fully connected with high numbers of dependencies.
● This violates the benefits of our architecture style, as this level of coupling 

makes it impossible to change the implementation of one subsystem without 
affecting other subsystems

● It became clear to us that our architecture needed to change to change to 
correct this violation  



Derivation, Continued

● To reduce coupling, we changed our approach 
● Focusing on the purpose of the classes within the directory, we moved 

directories as units, choosing the most common purpose for each
● Although lower cohesion, we believe that these changes better reflect the 

concrete architecture
● Created two new subsystems...



Concrete Architecture

Legend

- This is the concrete architecture
- Directories were searched and sorted 

based on relations and services
- High coupling and high cohesion
- Best reflects Chrome as it is today



Justification

- The concrete is 
object-oriented and is not 
layered

- Too many dependencies

- UI -> Browser becomes        
UI <-> Browser

- Platforming handling

- New subsystem Components 
is codependent on UI

Legend



Sequence Diagram



Concrete UI



Concurrency

● We originally required a “centralized concurrency controller”
● Previously determined to be a part of Browser subsystem
● Upon researching the concrete architecture, we discovered that this was its 

own subsystem
● Our previous report had noted that Mojo was the system they were using
● Thus, we created the “Concurrency” subsystem
● Main dependencies:

○ Plugin: for controlling sandboxed plugins, broker interfaces
○ Browser: for handling tabs, windows, iframes



Components

● Our previous report suggested multiple extensions assessing the plugin 
subsystem

● We neglected to include these in any subsystem
● After viewing the codebase, the components directory housed most of these 

extensions, however were given more permissions
● Main dependencies:

○ UI: for interaction with the application window (bookmarks’ ‘star’)
○ Network: for network access & network interruptions
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Lessons Learned
Thick coupling & Low Cohesion

● Not layered style, all object oriented
● Hack-y files and classes

New subsystems & new dependencies 
● Components & Concurrency added
● Local Storage component does not work as expected

Concrete Architecture of Chrome has difficult modifiability
● Interfaces vs. Huge interdependent codebase
● Not layered, less modifiable

○



Lessons Learned: Chrome Team Issues

Amount of interfaces creates modifiability difficulties 
● Comes from thick coupling

Open Source issues expanded
● Created a huge codebase
● Some poorly documented subdirectories included

Object oriented style side effects in a huge codebase
● Next to impossible to test in the concrete architecture

○



Lessons Learned: Limits of Findings
Owners of the code are listed only by emails

● Possible to search codebase for email

Comments on lots of main directories do not include README.md
● Certain README.md files are just not helpful

Understand software can be slow on such a huge codebase



Lessons Learned: Process of Using Understand
The Good: What works

● Familiar aesthetic interface
● Functional 

○ Good visual representation of systems & subsystems

The Bad: Inconveniences
● Long wait times
● Workarounds needed
● Exporting/Importing

The Ugly: Ruins functionality 
● Crashes and saving



Lessons Learned: Our Team Issues

Achievements:

- Regular meetings 
- Individual work then discussion

Working on:

- Better concurrency
- Working consistently 



Chrome-clusion

- Chrome is a very large piece of software making it hard to Understand
- Documentation was still hard to follow and dive through (occasionally no 

ReadMe’s)
- Chrome has very high coupling within its Concrete Architecture
- Chrome’s Concrete Architecture contains two more components than we 

previously thought
- More frequent group meetings


